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The study of reversible, functional, and controllable adhesives is a matter of considerable practical interest,
and academic research. We report the adhesive response of a magnetorheological fluid confined between two
parallel plates under a probe-tack test, when it is subjected to an applied magnetic field. Our analytical
approach is based on a Darcy-like law formulation which considers a magnetic field-dependent yield stress
behavior. The adhesion force is calculated in closed form for two different configurations produced by a
Helmholtz coils setup: uniform perpendicular, and nonuniform radial magnetic fields. In both cases, we verify
that adhesion force is hugely increased as a result of the field-dependent nature of the yield stress. This
provides a versatile way to obtain a shear resistant, tough structural adhesive through magnetic means.
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I. INTRODUCTION

During the last few years there has been a continuous
interest in the study of the adhesion properties of fluids
�1–12�. These investigations have scrutinized, both theoreti-
cally and experimentally, a variety of situations involving
Newtonian, non-Newtonian �shear-thinning, shear-
thickening, viscoelastic, etc.�, and magnetic fluids �ferroflu-
ids and magnetorheological fluids�. A common goal in all
these studies was to measure and evaluate the adhesive per-
formance of a given fluid material through the so-called
probe-tack test �13,14�. In the plate-plate variant of this test,
a fluid sample is confined between two parallel plane plates,
and then the upper plate is lifted vertically at a known rate.
In response to this confined shearing flow a downward adhe-
sive force normal to the upper plate is produced and properly
recorded. This quantifies the adhesive strength of the fluid
sample under tension as a function of the upper plate dis-
placement.

One very important aspect in adhesion science and in its
applications is the ability to control the bond strength of
adhesives. With respect to this point, a suggestive control
mechanism has been proposed in Ref. �7�, which investi-
gated adhesion phenomena in viscous, Newtonian ferroflu-
ids. Ferrofluids �15,16� are stable colloidal suspensions of
nanometersized magnetic particles suspended in a nonmag-
netic carrier fluid. These magnetic fluids behave superpara-
magnetically and can easily be manipulated with external
magnetic fields. It has been shown that the adhesive proper-
ties of a ferrofluid can be enhanced or reduced by varying the
intensity, and geometric configuration of an externally ap-
plied magnetic field �7�. Within this context, a ferrofluid
would act as a sort of adjustable “magnetic glue” for which
the adhesion strength is regulated by magnetic means.

Most conventional adhesives are based on weakly
crossed-linked high-molecular weight polymers, so usually
they are markedly non-Newtonian, and present very complex
rheological properties. In order to conciliate the complicated
non-Newtonian aspects of regular adhesive materials, and the

magnetically controlled adhesion mechanism offered by
magnetic fluids, the adhesion properties of non-Newtonian,
chain forming ferrofluids have been examined �12�. The de-
velopment of denser and more strongly magnetized ferroflu-
ids has revealed a wide range of non-Newtonian behaviors in
these liquids �17,18�, which are attributed to the formation of
short chains when the magnetic particles are exposed to
strong magnetic fields. The results obtained in Ref. �12�. in-
dicate that the existence of these short chains has a signifi-
cant impact on the adhesive strength as well as on the vis-
cosity of the ferrofluid, making it to display both shear-
thinning and shear-thickening regimes. This opened up the
possibility of monitoring complex rheological responses of
such fluids with the assistance of applied magnetic fields.

Despite the stimulating magnetic field-induced adhesive
properties displayed by both Newtonian �7� and non-
Newtonian �12� ferrofluids, key effects like viscoelasticity
and plasticity, which are common in ordinary adhesives,
seem not to be present in such magnetic fluids. These effects
are very important if one needs to increase the adhesion
strength between surfaces, where a shear resistant, tough
structural adhesive is necessary. As a matter of fact, the pos-
sible appearance of viscoelastic properties such as yield
stress in ferrofluids, and its dependence on the applied mag-
netic field has been recently investigated experimentally
�19,20�. Note that as opposed to Newtonian fluids, yield
stress fluids �21� can support shear stresses without flowing.
As long as the stress remains below to a certain critical value
they do not flow, but respond elastically to deformation. It
has been shown that in ferrofluids the yield stress is propor-
tional to the square of the applied magnetic field strength.
But, unfortunately, it has also been found that the field-
dependent yield stress is very small �O�10−2 Pa−10−1 Pa��.
Therefore, one should not expect a dramatic change in the
yield stress properties of existing ferrofluids by applying a
magnetic field.

In contrast to ferrofluids which present particles with di-
ameters of a few nanometers, magnetorheological �MR� flu-
ids typically consist of micronsized magnetized particles dis-
persed in aqueous or organic carrier liquids. The unique
feature of this type of magnetic fluid is the abrupt change in
its viscoelastic properties upon the application of an external
magnetic field �22–26�. The changes are significant*jme@df.ufpe.br
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�O�105–106��, occur within a few milliseconds, and are
nearly completely reversible. In the absence of an applied
field �“off” state� the magnetized particles in the suspension
are randomly distributed, so that MR fluids appear similar to
liquids paints, exhibiting comparable levels of apparent vis-
cosity. When a magnetic field is applied �“on” state� the par-
ticles suspended in the fluid interact, and tend to align and
link together along the field’s direction, creating long particle
chains, columns, and other more complex structures. The
formation of such structures restricts the motion of the fluid,
causing it to display a solidlike behavior.

The efficiency of a MR fluid can be evaluated by its yield
stress, which measures the strength of the field-induced
structures formed. This yield stress increases as the magni-
tude of the applied magnetic field is increased, and is asso-
ciated to the highest value of stress �for which no flow is
observed� required to break the existing network of magnetic
interactions. In this sense, MR fluids work as smart liquid
materials whose viscoelastic properties can be conveniently
tuned by an applied magnetic field. This suggests that the
potential of external magnetic fields in providing controllable
changes in the adhesion performance and structural tough-
ness of magnetic fluids as originally proposed in Refs. �7,12�
has not been exhausted. In the case of MR fluids, this possi-
bility has been recently investigated by an experimental
group from MIT led by Hosoi and McKinley �11� who con-
ducted probe-tack experiments using a MR fluid subjected to
an inhomogeneous magnetic field produced by a small cylin-
drical magnet. Their experiments revealed orders of magni-
tude difference in the adhesion properties of the MR fluid
when the magnetic field is applied �11�. It has also been
found that the yield stress depends quadratically on the
strength of the applied field. Despite these promising news, a
systematic theoretical study of the adhesion phenomena in
confined MR fluids under probe-tack test circumstances still
needs to be undertaken. This is the main purpose of this
work.

In this paper we study the adhesion properties of a con-
fined MR fluid, subjected to two distinct magnetic field con-
figurations as sketched in Fig. 1: �a� perpendicular, when the
applied field is uniform and acts perpendicular to the plates
of the probe-tack apparatus; and �b� radial, for a radially

increasing in-plane field which is tangential to the plates.
This allows us to examine how the adhesive strength of the
MR fluid depends on the mutual orientation of the magnetic
field and the direction of deformation. Under such circum-
stances, the combined influence of the magnetic field ar-
rangement and the field-dependent yield stress in determin-
ing the adhesive response of the fluid is studied analytically.
The bond strength obtained for the general situation involv-
ing both magnetic field and field-induced yield stress is con-
trasted with the responses of other two important scenarios in
which, first, there is no applied magnetic field �yield stress
fluid, but effectively nonmagnetic�, and then the magnetic
field is applied, but the fluid is assumed to be of low yield
stress �fluid is magnetic, but of negligible field-induced yield
stress�. In summary, the purpose of our work is to study the
coupling between field-induced structuring and hydrody-
namic interactions, and examine their role in providing a
control of the adhesive strength of MR fluids by means of
applied magnetic fields.

II. CALCULATION OF THE ADHESION FORCE:
DARCY-LIKE LAW APPROACH

Figure 1 sketches the geometry of the system. We con-
sider a MR fluid confined between two narrowly spaced cir-
cular, flat plates. One end of the lifting apparatus, connected
to the upper plate, moves at a specified constant velocity V,
subjecting this plate to a pulling force F=F ẑ, where ẑ is the
unit vector along the z-axis. We consider that the apparatus
has a spring constant k, and that the lower plate is held fixed
at z=0. The initial plate-plate separation is represented by b0,
and the initial radius of the fluid drop is denoted by R0. At a
given time t the plate spacing is given by b=b0+Vt, where

V= ḃ=db /dt.
The confined MR fluid is subjected to two different mag-

netic field configurations �Fig. 1�, both produced by a pair of
current-carrying coils such that the applied field is �a� uni-
form and perpendicular or �b� radially increasing and copla-
nar with the lower plate. The coils are mounted so they are
parallel to �and coaxial with� the plates. Note that these two
distinct magnetic field configurations can be conveniently
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FIG. 1. �Color online� Schematic representation of the probe-tack apparatus, where a circular MR fluid drop of radius R and thickness b
is confined between parallel plates, and subjected to �a� a perpendicular and �b� a radial magnetic field configuration. The direction of the
electric currents flowing in the coils is also indicated. The upper plate is lifted at constant velocity V through the application of a force F.
The lower plate remains at rest located at the mid-plane between the coils �x-y plane�.
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obtained by using a single magnetic coils arrangement, the
only difference being the relative direction of the electric
currents flowing in the coils.

Our aim is to calculate the pulling force F analytically as
a function of the upper plate displacement b, by taking into
account the viscoelastic and magnetic nature of the yield
stress MR fluid. As shown in Ref. �2� the compliance of the
lifting apparatus can be safely neglected. Moreover, we fol-
low Refs. �2–9� and derive F assuming that the border of the
MR fluid drop remains circular during the entire lifting pro-
cess, with time-dependent radius defined as R=R�t�. Conser-
vation of fluid volume leads to the relation R2b=R0

2b0.
Within the framework of the lubrication approximation,

where the distance between the plates b is much smaller than
the radius R of the fluid drop, and by neglecting inertial
effects, a Darcy-like law for a yield stress fluid can be writ-
ten as �27–30�

dp

dr
=

2�y

b
�1 + f��̇�� , �1�

where p is the gap-averaged hydrodynamic pressure, �y is
the yield stress, �̇�V /b denotes the shear rate, and the func-
tion f��̇� includes viscous contributions and tends to zero
when �̇→0.

By assuming a low shear regime, taking into account the
contribution of magnetic forces, and the existence of a mag-
netic field-dependent yield stress �y =�y�H�, we rewrite Eq.
�1� as a modified Darcy’s law for confined MR fluids

d�

dr
=

2�y�H�
b

, �2�

where

� =
1

b
�

0

b

�p − ��dz �3�

is a gap-averaged generalized pressure in which

� = �0�
0

H

MdH �4�

denotes a magnetic pressure, where �0 denotes the magnetic
permeability of free space, and M is the magnetization of the
MR fluid. In this context, the magnetic body force acting on
the MR fluid is given by �0M �H �15,16�, where H is the
local magnetic field. The low shear rate limit ��̇→0� is jus-
tified by the fact that in probe-tack experiments �̇ is usually
very low �2,4,5,9�. The replacement of p by the generalized
pressure � is also a standard procedure in the study of con-
fined magnetic fluid flow problems �31,32�.

On the basis of the experimental findings of Refs.
�11,19,20� and in agreement with the theoretical models dis-
cussed in Refs. �24–26�, we assume the following relation
between the yield stress and the local magnetic field H,

�y�H� = �y0 + �H2, �5�

where �y0 represents the yield stress in the absence of the
magnetic field, and � is a constant that depends on the ma-
terial properties of the MR fluid, being proportional to the

particle volume fraction �26�. In general the field dependence
of a yield stress fluid is represented by a power law �y�H�
�Hn with 1�n�2, and the case we consider here n=2 is
the one for which the magnetization is linearly related to the
applied magnetic field �24–26� M=�Ha, where � is the mag-
netic susceptibility. This linear relation holds as long as Ha
	Hsat, where Hsat is the field magnitude at saturation mag-
netization �O�102 kA /m–103 kA /m��.

The local magnetic field can include contributions from
the applied field as well as the demagnetizing field. We con-
sider only the lowest-order effect of the magnetic interac-
tions �33�. Thus, in the perpendicular situation, we include
the demagnetizing field produced by the uniform magnetiza-
tion resulting from the applied field. However, in the radial
field case, we consider only the action of the applied field,
and neglect demagnetazing effects. Despite the similarity of
these assumptions with the ones considered for the case of
ferrofluids �7�, we stress that the Darcy’s law form given by
Eq. �2� and the existence of a sizable magnetic field-
dependent yield stress as expressed by Eq. �5� are unique
features of MR fluids.

The force exerted by the lifting apparatus on the upper
plate is calculated by integrating the hydrodynamic pressure
difference above and below it �7,12�, yielding

F = �
0

R

2
rdr����R� − ��r�� + ���R� − ��r��

+
1

2
�0�Mr

2�R� − Mz
2�r��� . �6�

Notice that the first term inside the curly brackets is readily
calculated by integrating Eq. �2�. On the other hand, the
terms Mr�R� and Mz�r� denote the normal component of the
magnetization evaluated at the boundaries r=R, and z=b,
respectively. These terms derive from the pressure jump
boundary condition �15,16�

�p = −
1

2
�0Mn

2, �7�

where as in Refs. �2,9� we have neglected surface-tension
effects. In Eq. �7�, Mn represents the normal component of
the magnetization at the fluid boundaries.

III. TWO FIELD CONFIGURATIONS:
RESULTS AND DISCUSSION

In this section we calculate closed-form expressions for
the adhesion force �Eq. �6�� by considering that the applied
magnetic field is perpendicular, or radially symmetric. For
each case, we discuss how the force F varies as a function of
the plate separation b for typical values of the dimensionless
control parameters of the system. While presenting our re-
sults we make sure that the values of all relevant dimension-
less quantities we utilize are consistent with realistic physical
parameters related to existing probe-tack test instruments,
magnetic field arrangements, and material properties of MR
fluids. For the typical parameters related to probe-tack ex-
periments we take �2,4,5,9�: k=5.0�105 N /m, R0
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=10−2 m, b0=10−4−10−3 m, and V=10−7−10−6 m /s. While
dealing with the strength of the magnetic fields, we consider
relatively low values 5�H0�30 kA /m which are easily
achievable by using a typical Helmholtz coils setup, where
the radius of a coil is considerably larger than the radius of
the MR fluid droplet. The characteristic length L related to
the radial magnetic configurations is of the order of a few
centimeters �34�. It is also worth pointing out that the plate
dimensions of real probe-tack apparatus and the size of the
magnetic coils are compatible. Regarding the material prop-
erties of the MR fluid we take �=3.0�10−7 N /A2 �11,19�
and consider that the “off” state yield stress �y0 varies from
3 to 45 Pa �11,35�. Finally, for the magnetic susceptibility we
take 0.1���1 �36�.

A. Perpendicular magnetic field

First, we consider the perpendicular field case in which a
uniform magnetic field,

Ha = H0ẑ , �8�

is applied normal to the parallel plates of the probe-tack ap-
paratus. In a laboratory this perpendicular field configuration
can be readily generated by a pair of identical Helmholtz
coils whose electric currents have the same magnitude and
flow in the same direction. In consequence to its relatively
easy practical implementation the perpendicular field ar-
rangement has been largely utilized to investigate both ex-
perimentally and theoretically various aspects of the physics
behind complex magnetic fluids.

Due to the demagnetizing effects �15,16�, the uniformity
of the perpendicular magnetic field is distorted inside the MR
fluid sample. Our calculation takes such important effects
into consideration in an explicit manner. By utilizing Eq. �4�
and considering that the local magnetic field differs from the
externally applied field by a droplet-shape-dependent demag-
netizing field such that H=Ha+Hd, where Hd=−�, the
magnetic pressure for the perpendicular field can be ob-
tained. The magnetic potential  arises from magnetic
charges along the top and bottom surfaces of the circular
fluid domain, and is equivalent to the one calculated for a
parallel-plate capacitor �37�.

By using Eqs. �3� and �4� we can describe the MR fluid
boundary by a simple closed curve C parametrized by ar-
clength s and rewrite the gap-averaged magnetic pressure as
�7,31,32�

�� =
�0M2

2
b �	C

ds�D̂ � t̂�s�� + 	
C

dx� ln��y − y��

+ 
D2 + b2�� , �9�

where x=x�s�, x�=x�s��, etc., t̂�s�� is the unit tangent vector

at arclength s�, and D̂=D /D is the unit difference vector
pointing from the point r= �x ,y� to the point r�= �x� ,y��.
Substituting Eq. �9� into Eq. �6� results in a dimensionless
adhesion force

F� =
1

b5/2�1 + NN
��1 −

24��


b3/2�
0

1

udu�
u

1

I�u��du���
− NB

��2

b �


2
−

4�

b3/2�
0

1

I�u�udu −
1

2
I�1��� , �10�

where

I�u� = �
0


/2  1 − u + 2u sin2 �


�1 − u�2 + 4u sin2 �
�d�

+
1

2
�

0




ln�
1 + �1 − u�2R2

b2 + 4
R2

b2 u sin2 �

−
R

b
sin 2��sin 2�d� . �11�

NB
�= ��0H0

2R0
2b0� /k�2 is the magnetic Bond number for the

perpendicular magnetic field configuration, NN
�=�H0

2 /�y0 is
the “non-Newtonian” dimensionless parameter which mea-
sures the relative strength of magnetically induced yield
stress effects with respect to the “off” state yield stress. The
parameter �= �b0

1/2R0� /�3/2 is a dimensionless geometric fac-
tor related to the demagnetizing field. Note that the adhesion
force obtained in Eq. �10� has been rescaled by k�
= �2
�y0R0

3b0
3/2� /3�5/2. In addition, lengths have been res-

caled by �. This somewhat complex rescaling of the data has
been originally introduced by the work of Derks et al. �2�,
where adhesion phenomena in nonmagnetic fluids have been
studied both experimentally and theoretically. For consis-
tency, and also to allow a more direct connection with Refs.
�2,7,12� we adopted the same rescaling. We point out that,
after appropriate reintroduction of dimensions, our adhesion
force expression �10� agrees with the equivalent formula ob-
tained in Refs. �2,28�, which examined the considerably sim-
pler case where the yield stress fluid is nonmagnetic �NB

�

=NN
�=0�.
Figure 2 plots the force-distance curves for the perpen-

dicular field case, assuming that �=3.16�103, b0=10, and
�=0.1. Figure 2�a� considers a fixed value of NB

�=0.15 and
three different values of NN

� :62.50 �light gray curve�, 31.25
�medium gray curve� and 15.62 �dark gray curve�. As ex-
pected, by inspecting Fig. 2�a� we verify that for a fixed
value of NB

�, the adhesion force becomes increasingly larger
for higher values of the non-Newtonian parameter NN

�. Re-
call that in practice the magnitude of NN

� can be tuned by
varying the strength of the applied field �H0�, or by manipu-
lating the magnetic properties of the MR fluid ���, namely,
its particle volume fraction. This is exactly the type of con-
trol mechanism that can be used to either enhance or de-
crease the adhesion performance of a MR fluid by magnetic
means.

A log-log plot of the force-distance curves is presented in
Fig. 2�b� where the lifting of the upper plate occurs for three
distinct situations: �i� field-dependent yield stress MR fluid
under the influence of a perpendicular field �NN

�=62.50 and
NB

�=0.15, solid gray curve�; �ii� field-independent yield
stress MR fluid under the influence of a perpendicular field
�NN

�=0 and NB
�=0.15, solid black curve�; and �iii� MR fluid
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in the absence of an applied magnetic field, or “off” state MR
fluid �NN

�=0, NB
�=0, dashed curve�. The first noteworthy as-

pect of this system is the decrease in adhesion force purely
due to the magnetic field, i.e., when the field-dependent yield
stress is negligible. This can be verified by observing that the
solid black curve lies below the dashed one. We point out
that the relative �minimum� difference between these two
curves is on the order of 22%. This result indicates a real,
potentially observable difference in behavior due to the mag-
netic field, since a shift in data as small as 20% is expected to
be resolvable by current experimental techniques �38�. This
behavior �decrease in F�� for field-independent yield stress
MR fluids is similar to the one detected in Ref. �7� for New-
tonian ferrofluids subjected to a perpendicular field. Even
though magnetic dipole-dipole repulsion tends to make the
confined droplet to spread out �what would make the adhe-
sion force to increase�, the normal component of the magne-
tization acting on the upper plate has a more relevant role,
and the net effect is a decrease in adhesion.

A completely different scenario is revealed when one con-
siders the situation involving a field-dependent yield stress
MR fluid �gray curve in Fig. 2�b��. In this case one can verify
a dramatic increase in F� with respect to the nonmagnetic
situation �dashed curve�. Notice that here the effect exclu-
sively due to the magnetic field, which tends to diminish F�,
is completely obscured by the field-dependent yield stress
contribution. In fact the adhesion force for the field-
dependent yield stress MR fluid is about 50 times larger than
the one calculated for the nonmagnetic case. Although an
increase in the value of the adhesion force when one in-
creases the yield stress is not really surprising, such an enor-
mous field-induced magnification could not been trivially an-
ticipated. We stress that this is a very significant increase in
comparison with the usual responses computed for Newton-
ian �typical increase around 20–30%� �7� and non-Newtonian
�increase of roughly 80%� �7� ferrofluids. This expressive
change in the adhesion strength of the fluid material is due
the formation of large particle chains, and the important de-

pendence of its yield stress behavior on the magnetic field as
expressed in Eq. �5�. It is also worth noting that analogous
order-of-magnitude difference has been observed experimen-
tally in Ref. �11�, where a field-dependent yield stress MR is
subjected to the magnetic field of a small magnet.

We close our discussion about the perpendicular field case
by adding a few remarks about Fig. 2�b�. Up until this point
we have focused our analysis on the magnitude of the adhe-
sion force. Now we comment on the specific form of the
force displacement curves, by addressing their dependence
on the plate separation b. We begin by inspecting Eq. �10�,
and consider the zero applied field case �NN

�=NB
�=0� where

F��b−5/2 as represented by the dashed line. This is in agree-
ment with the results originally obtained in Refs. �2,28� for
nonmagnetic fluids. Another case of interest is the one re-
lated to the field-independent yield stress situation �NN

��0
and NB

��0� as depicted by the solid black curve. Under such
circumstances, the demagnetizing term proportional to �
contributes to an enhanced adhesion, and presents a non-
trivial dependence on b, where a term proportional to b−5/2 is
multiplied by the complicated integral expression given by
Eq. �11�. On the other hand, the remaining term proportional
to NB

� comes from the normal magnetization piece in Eq. �6�,
and scales as b−1, acting to decrease the adhesion force.
Since in Fig. 2�b� the solid black curve lies below the dashed
one, we conclude that the normal magnetization term is
prevalent. The net contribution of all the terms proportional
to NB

� results in the following scaling: �b−2.9 for smaller b,
and �b−4.7 for larger b.

Finally, we turn to the field-dependent yield stress case
�NN

��0, NB
��0� related to the solid gray curve in Fig. 2�b�.

Now, the demagnetizing term proportional to NN
� and � tends

to decrease the adhesion, presenting a complex dependence
proportional to b−4 multiplied by the integral term. However,
the dominant term is the one proportional to NN

�, and inde-
pendent of � which scales with b−5/2. Note that this is the
term that dramatically increases the adhesion force, but still
retains the same scaling of the zero magnetic field situation.

10 15 20
b

0

0.05

0.1

0.15

F
�

�a�

NN
��62.50

NN
��31.25

NN
��15.62

10 15 20
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0.001
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0.1

F
�

�b�

NN
��62.5, NB

��0.15
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NN
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FIG. 2. Adhesion force for the perpendicular field case F� as a function of displacement b, for �a� NB
�=0.15 and three values of NN

�; and
�b� contrasting the case of zero applied field �dashed curve�, with the ones assuming the action of the perpendicular field, for a field-
independent �solid black curve�, and a field-dependent �solid gray curve� yield stress MR fluid. It is assumed that �=3.16�103, b0=10, and
�=0.1.
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B. Radial magnetic field

Very recently a theoretical study �39� has proposed that
simply by reversing the direction of the current in one of the
Helmholtz coils �“anti-Helmholtz” arrangement �40��, one
could produce a very simple, but innovative nonuniform
magnetic field disposition, given by

Ha =
H0

L
rr̂ �12�

at z=0, where L is a characteristic length, and r̂ represents
the unit vector along the radial direction. This purely radial
magnetic field acts in the mid-plane between the coils, and
its real world existence has been already checked experimen-
tally �34�. For this particular field configuration, the mag-
netic pressure given by Eq. �4� can be readily written as

�r�r� =
�0�H0

2r2

2L2 . �13�

Notice that the radial applied field naturally presents a radial
gradient, so that at lowest order in the magnetic force we can
neglect the demagnetizing field contribution.

Before proceeding with the calculation of the adhesion
force, it is worth mentioning that due to the fully three-
dimensional divergence-free condition � ·Ha=0, near the x
−y plane we actually have magnetic field contributions along
the radial �Ha

r� and axial �Ha
z� directions. Under the circum-

stances that the radius of the coils is much larger than the
dimension of the MR fluid sample, we have found that

Ha
r

Ha
z = −

1

2

r

z
. �14�

Therefore, for the large aspect ratio situation �R�t��b�t��
occurring under probe-tack tests we can say that Ha

r �Ha
z .

Consequently, the applied field can be considered simply as
radial. Moreover, for this situation we have verified that the
axial field contribution for the adhesion force is indeed much
smaller ��102–103 times smaller� than its radial counterpart.

By taken into account the discussion above, and by sub-
stituting Eq. �13� into Eq. �6� we obtain the dimensionless
adhesion force

Fr =
1

b5/2 + NN
r 1

b7/2 + NB
r �� +

1

2
� 1

b2 , �15�

where NB
r = �
�0H0

2R0
4b0

2� /2k�3L2 is the magnetic Bond num-
ber in the radial field case, and NN

r = �3�H0
2R0

2b0� /5�y0�L2 is
the non-Newtonian parameter. We stress that the radial adhe-
sion force is made dimensionless by using the same rescaling
utilized in the perpendicular field case.

Figure 3 depicts the force-distance curves for the radial
field case, assuming that b0=10, and �=0.1. Figure 3�a� con-
siders a fixed value of NB

r =1.5, and three different values of
NN

r :230 �light gray curve�, 115 �medium gray curve�, and
57.5 �dark gray curve�. Similarly to what has been discussed
in the perpendicular field case �Fig. 2�a�� here we observe
that by increasing the value of the non-Newtonian parameter
NN

r an increasingly larger adhesion force results. We point
out that the similarity of behaviors shown in Figs. 2�a� and
3�a� occurs despite the differences in the symmetry proper-
ties of these magnetic field arrangements.

Figure 3�b� illustrates a log-log plot of the force-distance
curves, where the lifting occurs for three distinct situations:
�i� field-dependent yield stress MR fluid under the influence
of a radial field �NN

r =230, NB
r =1.5, solid gray curve��; �ii�

field-independent yield stress MR fluid under the influence
of a radial field �NN

r =0, NB
r =1.5, solid black curve��; and �iii�

MR fluid in the absence of an applied magnetic field, or “off”
state MR fluid �NN

r =0, NB
r =0, dashed curve�. In contrast to

the perpendicular field case, in Fig. 3�b� we notice that the
sole action of the radial field produces an increase of roughly
28% in the adhesion force with respect to the nonmagnetic
situation. The origin of this behavior can be justified by the
existence of an inherent field gradient along the outward ra-
dial direction, which tends to spread out the fluid droplet,
making the lifting process more difficult.

10 15 20
b

0

0.04

0.08

F r

�a�

NN
r �230

NN
r �115

NN
r �57.5

10 15 20
b

0.001

0.01

0.1

F r

�b�

NN
r �230, NB

r �1.5
NN

r �0, NB
r�1.5

NN
r �0, NB

r �0

FIG. 3. Adhesion force for the radial field case Fr as a function of displacement b, for �a� NB
r =1.5 and three values of NN

r ; and �b�
contrasting the case of zero applied field �dashed curve�, with the ones assuming the action of the radial field, for a field-independent �solid
black curve�, and a field-dependent yield �solid gray curve� stress MR fluid. It is assumed that b0=10, and �=0.1.
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Once again we verify that adhesion force is hugely in-
creased for the case of the field-dependent yield stress MR
fluid, as illustrated by the gray curve in Fig. 3�b�. In this
radial case the adhesion force is about 23 times larger than
the one calculated for the nonmagnetic situation �dashed
curve�. This makes evident the great significance of the the
yield stress field dependence in determining the adhesion
behavior in MR fluids for both the radial and perpendicular
field setups.

We conclude this section by briefly discussing the specific
form of the force displacement curves under the radial mag-
netic field configuration shown in Fig. 3�b�. As expected we
observe from Eq. �15� that for the zero applied field case
�NN

r =NB
r =0� Fr�b−5/2, corresponding to the dashed line. On

the other hand, the contribution of the magnetic field �NN
r

=0 and NB
r �0� related to the solid black curve introduces an

additional b−2 dependence, which will be dominant for larger
values of b. As commented earlier this happens due to the
intrinsic gradient provided by the applied magnetic field. Fi-
nally, since NN

r �NB
r the consideration of the field-induced

yield stress adds a substantial modification on the behavior
of the adhesion force, making it to vary according to Fr
�b−7/2 �solid gray curve�. So, the field-dependent yield
stress leads to a more significant drop of Fr with b as com-
pared to the zero applied field case. Physically, this could be
expected from the very nature of the radial magnetic field:
due to volume conservation as b is increased the droplet
contracts, and moves toward regions of lower magnetic field
intensity, leading to a stronger decrease in the yield stress
value. It is worth noting that the influence of the field-
dependent yield stress is twofold: it hugely increases the
magnitude of Fr, and also modifies its dependence on b.

IV. CONCLUDING REMARKS

One of the most desirable properties for an ideal adhesive
material would be the capability of switching its adhesive
strength on and off in a reversible way via an external con-
trolling mechanism. In this work, we exploited this possibil-
ity by examining a confined plate-plate system in which a
magnetorheological fluid behaves as such “smart” adhesive,
when subjected to an external magnetic field. By employing
a Darcy-like law approach, and considering an explicit mag-
netic field dependence of the yield stress, we have been able

to evaluate the adhesion performance of the MR fluid. Two
magnetic field configurations have been considered by using
basically the same Helmholtz coils arrangement, where ei-
ther a uniform perpendicular field, or a nonuniform radial
field can be generated. Our analytical calculations indicate
that for both field configurations one obtains adhesive forces
which can be dramatically larger than the ones measured by
usual situations in which field-dependent yield stress effects
are not taken into account. While both field configurations
lead to an enhanced adhesion force, we have detected that
they behave differently regarding their scaling with respect
to the plate separation b: if on one hand the perpendicular
field keeps the same scaling as the zero-field case �F�

�b−5/2�, on the other hand the radial field introduces a dis-
tinct scaling where Fr�b−7/2.

It is worthwhile to note that mechanisms of magnetically
enhanced adhesion have been previously investigated for
Newtonian �7�, and non-Netonian ferrofluids �12�. Neverthe-
less, the increase in adhesion calculated for these systems is
quite modest in comparison with the order-of-magnitude dif-
ferences we have predicted in this work for magnetorheo-
logical fluids.

We point out that our theoretical results have not yet been
verified by experiments. An interesting experiment on the
investigation of adhesive properties of MR fluids have been
recently performed by Ewoldt et al. �11,30� who studied the
action of an inhomogeneous magnetic field produced by a
small cylindrical magnet. However, considering the relative
simplicity of the Helmholtz coils experimental setup we
hope that experimentalists will feel motivated to check our
theoretical predictions. Of course, our analytical model is an
initial attempt to get some insight about the potential use of
MR fluids as “smart” adhesives so that more complicated
effects like cavitation and wetting failure have not been con-
sidered. Again, we expect that theorists will be inclined to
add these contributions into more sophisticated theoretical
descriptions of the system in the future.
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